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Mixed columnar-plaquette phase of hard-core bosons and its quantum melting
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We examine the ground-state phase diagram of repulsively interacting hard-core bosons on the quarter-filled
checkerboard lattice using quantum Monte Carlo simulations constrained to the canonical ensemble. At a
sufficiently large repulsion, the system undergoes a quantum phase transition from a superfluid into a valence-
bond-solid regime. We identify this as a weakly first-order quantum melting transition at quarter filling.
Furthermore, by examining appropriate order parameters, we exhibit the mixed nature of the valence bond
solid, with both columnar and plaquette long-ranged order. Our results demonstrate the realization of the mixed
columnar-plaquette phase found recently for the square lattice quantum dimer model in a microscopic bosonic

system.
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I. INTRODUCTION

In search for exotic quantum phases and unconventional
quantum phase transitions, lattice models of hard-core
bosons with short-ranged repulsions are being intensively
studied recently. Such models can exhibit order-by-disorder
phenomena if quantum fluctuations lift an extensive ground-
state degeneracy from the classical limit, and new quantum
phases emerge. Examples include supersolid phases in the
case of the triangular lattice,'* valence bond solids,>° a Z,
spin liquid’~ on the kagome lattice, and a U(1) liquid on the
pyrochlore lattice.!” In the limit of dominant kinetic terms,
these systems stabilize a superfluid phase on both bipartite
and nonbipartite lattices. The quantum phase transition be-
tween a superfluid and a valence bond solid, which breaks
the space-group symmetry, would be expected to be generi-
cally first order within Landau’s theory of phase transitions.
However, in recent analytical scenarios, some of these tran-
sitions have been conjectured to fall outside this framework,
and to establish examples of Landau-forbidden second-order
quantum phase transitions.'-1?

Based on gauge theory considerations, such conclusions
were reached also for interacting hard-core bosons on the
checkerboard lattice at quarter filling.'> This was, however,
in contrast to quantum Monte Carlo (QMC) results reported
by the same authors, which indicated a weakly first-order
transition near quarter filling.!3> The definite nature of the
insulating phase emerging in this model also remained un-
clear. As detailed below, one might expect that in this model
a mixed phase exhibiting both columnar and plaquette order-
ing could be realized; such expectation is based on a recent
study'# on the square lattice quantum dimer model,"> which
effectively describes the restricted dynamics in the hard-core
boson model for dominant repulsions.'* Indeed, in Ref. 14, it
was concluded that such a mixed columnar-plaquette phase
exists in the relevant parameter range of the quantum dimer
model.

Motivated by these investigations, we here present results
from QMC simulations on this model of hard-core bosons on
the checkerboard lattice, constrained to exactly quarter fill-
ing. Our simulations were performed using the generalized
directed loop'®!” stochastic series expansion'®!° algorithm
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with a plaquette decoupling, in the effective ground state of
finite systems with up to N=L X L=60X 60 lattice sites (we
found that temperatures 7=0.55 J/L were necessary in order
to assure that ground-state properties were obtained). As pre-
sented in detail below, we conclude from our numerical in-
vestigation that (i) indeed the valence bond solid in this
model exhibits a mixed nature of both columnar and
plaquette ordering, and (ii) this state melts at a weakly first-
order quantum phase transition into the superfluid phase also
at fixed quarter filling, i.e., through the tip of the quarter-
filled insulator lobe in a grand-canonical phase diagram.'3

II. BOSONS AND QUANTUM DIMER MODELS

In the following, we analyze the ground-state properties
of the hard-core extended boson Hubbard model

H=-J2 (bjb;+bb) + VX nn;+V 2 nn; (1)
(i.j) (i.j) K
on the checkerboard lattice shown in Fig. 1(a). Here, b! (b;)
denote creation (annihilation) operators for hard-core bosons
on lattice site i, and n,-:bfbi the local-density operator; J is
the nearest-neighbor hopping amplitude, and V' a repulsion
that acts along the nearest-neighbor bonds and also the next-
nearest-neighbor bonds (red lines in Fig. 1) of the filled
plaquettes (clusters) of the checkerboard lattice.
In the canonical ensemble the above Hamiltonian equals,
up to a constant, the cluster-charging model

B B 1%
H=-72 (b}b;+bb) + =2 (n,~ 1)* 2)
(i) 25
expressed in terms of the cluster charges (densities)
Ny =Ny + Ny + M3+ T, (3)

on cluster p, where My =1 ,2,3,4 are the density operators
on the four sites that form cluster p, as indicated for the
central cluster in Fig. 1(a).

In the atomic limit J=0, the ground-state manifold at
quarter filling is spanned by all configurations, for which
each cluster is occupied by exactly one boson, n,=1. As is
well known, these configurations can be mapped onto hard-
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FIG. 1. (Color online) (a) Hard-core bosons (circles) on the
checkerboard lattice, and mapping to a dimer (bold blue/dark gray
lines) covering of the square lattice (red/gray lines). (b) The local
flip move of two parallel dimers along a void plaquette. (c) The
ideal columnar state of the quantum dimer model on the square
lattice. (d) The ideal plaquette state of the quantum dimer model on
the square lattice, with each filled square indicating the local reso-
nance shown in part (b).

core dimer coverings of the square lattice formed by the
diagonal bonds in the checkerboard lattice, namely, by as-
signing a dimer to each bond passing through a site that is
occupied by a boson, as illustrated in Fig. 1(a). A finite hop-
ping amplitude J# 0 induces quantum tunneling between
states from the classical ground-state manifold. The leading-
order effective Hamiltonian in the limit J/V—0 is a quan-
tum dimer model with resonance terms that flip two parallel
dimers on a square lattice plaquette from the vertical to the
horizontal orientation, and vice versa [cf. Fig. 1(b)],

Hi=—1 2 |CXC'. (4)

(c.ch

Here, the sum runs over all pairs of dimer coverings (C,C")
that differ by a single flip of two parallel dimers on a square
lattice plaquette, and r=0(J?/V). The above Hamiltonian is a
special point in the more general Rokhsar-Kivelson (RK)
quantum dimer model,’ that includes in addition to the
above kinetic term also a competing potential term,

Hy,=—1 2 |CXC'[+ 02X N, (O)CXCl, (5)
(c.c’ ¢

where Nj,(C) denotes the number of flippable plaquettes in
configuration C (in bosonic language this potential term re-
lates to additional interactions between bosons along the di-
agonals of all void plaquettes of the checkerboard lattice).
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The above Hamiltonian includes the special RK point at v
=t, where the system can be solved exactly, and has a critical
dimer liquid ground state, formed by the equally weighted
superposition of all dimer coverings.'’

The ground-state phase diagram of the above Hamiltonian
has been the subject of several investigations. For v/¢>1 the
system is in a staggered dimer ground state, whereas at suf-
ficiently negative v/t a columnar state illustrated in Fig. 1(c)
is stabilized.>?° Regarding the intermediate region —0.2
<v/t<l1, including the point v/t=0 of the hard-core
bosonic model in the form of Eq. (1), previous studies led to
differing conclusions. Leung et al.,>' based on exact diago-
nalizations, find indications for a transition at v/t=-0.2
from the columnar phase to a phase with disorder in the
columnar arrangement, consistent with a plaquette state, il-
lustrated in Fig. 1(d). Syljudsen,” using quantum Monte
Carlo, locates the transition from the columnar to the
plaquette phase at a significantly larger value of v/t=0.6.
Ralko et al.'* suggest these findings to be reconciled in a
scenario resulting from combining a symmetry analysis of
the ground-state manifold based on exact diagonalization and
Green’s function Monte Carlo with effective-field theory
considerations. The authors obtain a strong indication for a
mixed phase in the region 0.0 =<v/7=0.6, which interpolates
between the columnar and plaquette phases. In contrast to
the columnar and plaquette states, both of which are fourfold
degenerate, this mixed phase has an eightfold degenerate
ground-state manifold.'"* Evidence in favor of such a sce-
nario comes from the finite-size scaling of the excitation
gaps to the corresponding degenerate ground-state manifold
in the thermodynamic limit, as well as structure factors of
appropriate plaquette operators, which target specific
symmetry-breaking sectors.'* In the following, we employ
the equivalent bosonic versions of these order parameters to
establish the presence of a mixed phase also in the hard-core
bosonic model of Eq. (1). With respect to the quantum dimer
model, our results can thus be interpreted in favor of a mixed
phase at v/¢=0.

III. MIXED PHASE

As already noted in Ref. 13 the model in Eq. (1) exhibits
a quantum phase transition from a superfluid phase at domi-
nant hopping J to an insulating phase for V/J beyond a criti-
cal value, which we determine to be (V/J),=6.35(1) at quar-
ter filling. This transition is clearly seen in Fig. 2 from
monitoring the superfluid density pg as a function of V/J. In
the QMC simulations, pg is obtained?’ as

ps=T(W/(2J) (6)

from monitoring the boson winding number fluctuations
(W?). Also shown in Fig. 2 is the fraction f; that gives the
relative number of clusters (nonvoid plaquettes) that are oc-
cupied by a single boson. Inside the superfluid regime, f;
follows a linear increase with V/J, and exhibits sublinear
behavior inside the insulating phase, where it saturates to-
ward unity for J— 0. Indeed, in the limit /=0 we get f1=1,
corresponding to the single-occupation constraint on each
cluster, from the discussion in Sec. II. We find that within the
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FIG. 2. (Color online) Superfluid density pg and the fraction fi,
which gives the relative number of singly occupied clusters (non-
void plaquettes) for hard-core bosons on the checkerboard lattice at
quarter filling as a function of V/J. Data from QMC simulations of
a L=28 system are shown.

insulating regime more than 85% of the clusters on average
fulfill this single-occupation constraint that holds also in the
quantum dimer model limit of this model, and for V/J> 10,
this percentage has increased beyond 95%. This can be taken
as an indication that the quantum dimer model can provide a
description of the low-energy physics of this model over a
large extent of the insulating regime, and motivates our
search for a mixed phase in the bosonic model.

In order to establish the nature of the insulating phase,
Sen et al.'* employed two complex order parameters formed
from local-density and kinetic-energy operators, respectively.
In the notation of Fig. 1(c), the density based order param-
eter is given by

l/’c=n1(ﬂ-’0) + lnz(o, 77)’ (7)
in terms of the density Fourier transforms
18
na(q) = _E eiqArinia’ (8)
NU i=1

where the summation is performed over all N,=N/2 void
plaquettes, and n;, is the local bosonic density operator on
lattice site a=1,...,4 within plaquette i, according to the site
labeling along each void plaquette, as illustrated for the cen-
tral plaquette in Fig. 1(c). The integer coordinates r;
=(x;,y;) of plaquette i are taken with respect to the coordi-
nate system indicated in Fig. 1(c). This order parameter is
sensitive to spatial symmetry breaking in the insulating
phase.'? The inset of Fig. 3 shows the dependence of the
QMC expectation value of the magnitude of the order param-
eter, [.|*, as a function of V/t across the quantum phase
transition for different system sizes [L denotes the linear ex-
tent of the cluster with periodic boundary conditions in each
direction, so the number of lattice sites N=L2, and the cluster
shown in Fig. 1(a) corresponds to L=6]. The finite magni-
tude |¢,]> in the insulating phase reveals that translational
symmetry by one lattice spacing is broken in at least one
lattice direction. One might expect to access more detailed
information about the spatial symmetry breaking from the
phase of ¢,. A direct calculation of ¢, for the perfect colum-
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FIG. 3. (Color online) Plaquette operator based structure factors
Ss(7, ) and S4(0,0) as functions of V/J for different system sizes.
The inset shows the magnitude of the complex order parameter ||
vs V/J. The location of the quantum phase transition is indicated by
vertical dashed lines.

nar and plaquette states, however, reveals that this order pa-
rameter does not allow for a distinction between columnar
and plaquette ordering in a Monte Carlo simulation. In par-
ticular, depending on the orientation of the dimers (horizon-
tal vs vertical) in a columnar state, i, is either purely real or
purely imaginary. In the plaquette state, both real and imagi-
nary parts take on equal finite values. Hence, neither the
magnitude nor the phase of ¢, can, in an ergodic simulation,
provide more distinctive information about the type of sym-
metry breaking, i.e., (i) rotational plus translational in one
direction (columnar state), or (ii) translational in two perpen-
dicular directions (plaquette state), or (iii) both rotational and
translational in two perpendicular directions (mixed state).
Indeed, in Ref. 13 no such absolute phase information for i,
could be extracted from the quantum Monte Carlo simula-
tions.

In order to probe more specifically the ordering pattern,
we employ two diagonal order parameters that are con-
structed following Ref. 14 in terms of the symmetric and
antisymmetric plaquette operators

Ps(i) = njnp +nph,

P,(i) =n;nz —npny, 9

for each i=1,...,N, of the N, void plaquettes, again within
the notation of Fig. 1(b). For both plaquette operators, we
define corresponding structure factors

N,
1 < .
Ss(q) = N > TP Py(j),

vij=1

1 Y
Su(q) = — X TP ()P,(j)

vi,j=1

(10)

From an explicit calculation, one finds that in the thermody-
namic limit, S4(0,0)/N, remains finite in the columnar state,
but vanishes in the pure plaquette phase, where rotational
symmetry is restored. Furthermore, S¢(7,7)/N, remains fi-
nite for a plaquette state with bidirectional breaking of trans-
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FIG. 4. (Color online) Finite-size dependence of the plaquette
order based structure factors Sg(r, ) and S4(0,0) for different val-
ues of V/J.

lation symmetry, but vanishes in the pure columnar state,
where translation symmetry is partially restored. As in Ref.
14, we take the corresponding finite values as an indication
for a generic columnar [S4(0,0)/N,] and plaquette
[Ss(m,)/N,] states. In the main panel of Fig. 3 both struc-
ture factors are shown across the quantum phase transition. A
finite-size analysis reveals that both order parameters scale to
finite values in the thermodynamic limit for V/J>6.35 (we
do not find indications for any intermediate phase). This is
shown in Fig. 4 for V/J=8 and 7, closer to the quantum
critical point. From this we conclude that the insulating
phase is characterized by the simultaneous breaking of bidi-
rectional translational and rotational symmetry, as character-
istic for a columnar-plaquette mixed phase.'* This conclusion
is consistent with the QMC results!® for the kinetic-energy
correlation function, which exhibits Bragg peaks that are in
fact in accord with both a pure plaquette and a plaquettelike
(e.g., mixed) state.

IV. QUANTUM MELTING TRANSITION

The analytical calculations in Ref. 13 suggested that the
quantum phase transition between the superfluid and insulat-
ing phases to be a Landau-forbidden continuous unconven-
tional transition through the tip of the insulating lobe, i.e.,
along the line of constant density n=1/4. However, QMC
simulations'? close to the tip of the lobe gave indications for
a weakly first-order transition from a histogram analysis of
the order parameter |¢,.|>. In order to assess if such behavior
indeed persists up to the tip of the lobe, we performed the
same histogram analysis of this robust order parameter also
in our simulations at fixed density n=1/4. The resulting his-
tograms are shown in Fig. 5. While the histograms for the
L=40 system in the inset do not exhibit any clear double-
peak structure within the numerical resolution across the
transition point, we eventually obtain an indication for such a
double-peak structure for the largest system size for which
we performed our simulations (L=60) in the main panel of
Fig. 5. Only for this range of system sizes does the first-order
nature of the quantum melting transition becomes visible. We
thus conclude that the phase boundary between the n=1/4
mixed phase and the superfluid is first order everywhere.
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FIG. 5. (Color online) Histogram of the magnitude of the den-
sity based order parameter |¢,|> for the L=60 system for different
values of V/J close to the quantum phase-transition point. The inset
shows the histograms for the L=40 system, for values of V/J
=6.354,6.356, ...,6.568.

V. CONCLUSIONS

Based on quantum Monte Carlo simulations constrained
to the canonical ensemble, we reanalyzed the nature of the
insulating phase and the quantum phase transition to the su-
perfluid of hard-core bosons on the checkerboard lattice at
quarter filling. Employing appropriate order parameters, we
established the insulating regime as a mixed columnar-
plaquette phase; it connects to the mixed phase found re-
cently for the quantum dimer model on the square lattice.'* It
would be interesting for the future to study finite temperature
properties of the mixed phase, in particular the restoration of
rotation and translation symmetry at its thermal melting tran-
sition(s). Diagonal interactions on the void plaquettes of the
checkerboard lattice relate to the diagonal part of the quan-
tum dimer model, and could be included in order to estimate
the extent of the mixed phase. It will also be important to
search for similar mixed phases in the fermionic analog
model.”* We found the quantum melting transition of the
mixed phase to remain weakly first order also through the tip
of the insulator lobe. The interpretation of the gauge theory
considerations'? for this transition strongly relies on proper-
ties of the three-dimensional (easy plane) noncompact CP!
model. % Currently, such classical models are being inten-
sively discussed.>>=3* One might take our quantum Monte
Carlo result of a first-order transition as further evidence for
the absence®® of a continuous transition in the easy-plane
noncompact CP! model. Similarly, one could test if the quan-
tum melting transition of the valence bond crystals of hard-
core bosons on the kagome lattice>® at fillings n=1/3 and
n=2/3 also remains weakly first order through the tips of the
lobes.
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